
International Journal of Theoretical Physics, Vol. 37, No. 1, 1998

Systems of Covariance in Relativistic Quantum
Mechanics
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Developing some earlier work for spin-zero systems found in the literature, we
use some recently obtained generalized systems of covariance for the PoincareÂ
group to suggest a method for defining covariant localization operators on phase
space for massive relativistic particles with arbitrary integral or half-integral
spins. These operators lead to operationally defined position operators on spacelike
hyperplanes, which turn out to be the Newton±Wigner operators, and, as in the
earlier results on spin-zero systems, admit a consistent probability interpretation
with conserved currents.

1. PRELIMINARIES ON SYSTEMS OF COVARIANCE

Systems of covariance usually arise in quantum mechanics as sets of

localization operators on some parameter space, obeying specific transforma-

tion rules under the action of a kinematical symmetry group of the quantum
system being considered (Ali, 1985). The mathematical precursor of this

concept is that of a system of imprimitivity which arises in the theory of

induced representations of groups, as worked out by Mackey (1968). Let G
be a locally compact group, H a closed subgroup of G, and X 5 G /H the

associated left coset space. Let g j U (g) be a (strongly continuous) unitary

representation of G on the (separable, complex) Hilbert space h. Suppose
that there is defined, on the Borel sets @(X ) of X, a positive operator-valued

(POV) measure a, in other words, a mapping, a: @(X ) ® +(h)+, with

the properties

a (0¤) 5 0, a (X ) 5 I 5 identity operator on h

a 1 ø
i P J

D i 2 5 o
i P J

a ( D i) (1.1)
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where J is a discrete index set and D i ù D j 5 0¤, for i Þ j, the convergence

of the above sum being in the weak sense. For g P G and D P @(X ), let

g D be the translated set (under the natural action x j gx of G on X ). Then
the pair {U, a} is called a system of covariance if

U (g)a ( D )(g)* 5 a (g D ), g P G, D P @(X ) (1.2)

In this case it can be proved (Neumann, 1972; Scutaru, 1977) that U is

unitarily equivalent to a subrepresentation of an induced representation. In

the more restrictive situation where a is a projection-valued (PV) measure,

i.e., a ( D ) 5 P ( D ), where P ( D ) 5 P ( D )2 5 P ( D )*, for all D P @(X ), the
pair {U, P} is called a system of imprimitivity (Mackey, 1968) and in this

case U is itself equivalent to an induced representation.

The operators a ( D ), defining a system of covariance, are usually localiza-

tion operators for quantum systems moving in the parameter space X. Thus,

if f P h is a state vector, then p f ( D ) 5 ^ f | a ( D ) f & represents the probability

of finding the quantum system, in the state f , localized in the volume D of
the parameter space X. In practice X could, for example, be the position,

momentum, or phase space of the system. The covariance condition (1.2) is

then just the transformation law of these probabilities under the action of the

symmetry group G.
A rich source for building systems of covariance is provided by families

of coherent states (Ali et al., 1995). In fact, using families of coherent states,
one can introduce a somewhat more general notion of a system of covariance

than envisaged in (1.2). To see how this is done, assume that U is an irreducible
unitary representation of G and that the coset space X carries the invariant
measure d n (under the natural action of G on X ). Let s : X ® G be a (global)

Borel section, i.e., s (x) P G ( " x P X ) and p ( s (x)) 5 x, where p : G ® X
is the canonical projection. Let h i, i 5 1, 2, . . . , n, be a finite set of linearly

independent vectors in h. The set of vectors

S s 5 { h i
s (x) 5 U ( s (x)) h i | i 5 1, 2, . . . , n, x P X } (1.3)

is called a family of coherent states if its linear span is dense in h. If,

in addition,

o
n

i 5 1 # X

| h i
s (x) & ^ h i

s (x) | d n (x) 5 A s (1.4)

as a weak integral, where A s and A 2 1
s are both bounded operators, the coherent

states S s are said to form a frame. Furthermore, we say that the frame is

tight if A s 5 I. For tight frames we can define the following generalized
notion of a system of covariance: Let s g: X ® G be the covariantly trans-

formed section

s g(x) 5 g s (g 2 1x) 5 s (x)h (g, g 2 1x), g P G, x P X (1.5)
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where h: G 3 X ® H is the cocycle, h (g, x) 5 s (gx) 2 1 g s (x). Then s e 5
s (e being the identity element of G); for each g P G and D P @(x), define

the positive operator

a s g( D ) 5 o
n

i 5 1 # D

| h i
s g(x) & ^ h i

s g(x) | d n (x) (1.6)

It is easily verified that for each g P G, the family of operators a s g( D ),

D P @(X ), defines a POV measure. Furthermore,

U (g)a s ( D )U (g)* 5 a s g(g D ) (1.7)

a relation which now appears as a generalization of (1.2). If K , G is a

subgroup which stabilizes s , i.e., ( " k P K ) s k 5 s , then restricted to K the
pair {U, a} is a system of covariance in the sense of (1.2).

In order to obtain a satisfactory theory of localization for relativistic

particles, it has been realized for some time (see, for example, Ali, 1985)

that it is necessary to work with sets of localization operators which satisfy

the more general condition (1.7) rather than (1.2). We now indicate how it

is possible to achieve this, using systems of covariance arising from the
PoincareÂgroup.

2. SYSTEMS OF COVARIANCE FOR THE POINCAREÂGROUP

The PoincareÂgroup is the semi-direct product 3 -
1 (1, 3) 5 T 4 V¤ SL (2,

C), where T 4 . R1,3 is the group of space-time translations. Elements in

3 -
1 (1, 3) will be denoted by (a, A ), with a 5 (a0, a) P R1,3, A P SL(2, C).

The element of the proper orthochronous Lorentz group corresponding to A
will be denoted by L . Let 9 1

m be the forward mass hyperboloid, 9 1
m 5

{k 5 (k0, k) P R4 | k 2 5 k 2
0 2 k2 5 m 2, k0 . 0}. (We take " 5 c 5 1.) The

unitary irreducible representations U s
m of 3 -

1 (1, 3) which will concern us

here are the ones which describe relativistic particles of mass m . 0 and

spin s 5 0, 1/2, 1, 3/2, . . . . These representations are carried by the Hilbert

spaces hs
m 5 C2s+1

^ L
2(9 1

m , dk/k0) and are given by the unitary operators

(U s
m(a, A ) f )(k) 5 exp[ik ? a] $s(h (k)Ah( L 2 1k)) f ( L 2 1k)

k ? a 5 k0a0 2 k ? a (2.1)

( f P hs
m) where h (k) is the SL(2, C) element corresponding to the Lorentz

boost matrix for the 4-velocity k /m, and $s is the usual (2s 1 1)-dimensional

spinor representation of SU(2). We shall refer to the representation U s
m also

as the momentum space representation for a particle of mass m . 0 and spin s.
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We shall identify the physical phase space of the system with the

coset space

G 5 3 -
1 (1, 3)/T ^ SU(2) (2.2)

where T is the time translation subgroup. It can be shown that G admits a

global parametrization (q, p) P R6 in which q has the interpretation of a

position and p of a momentum variable, and in terms of this parametrization

the Lebesgue measure dq dp is the invariant measure (Ali, 1979) for G . In

order to build coherent states for the representations U s
m, it is useful to

consider a class of sections s : G ® 3 -
1 (1, 3), called affine sections. To

describe these, we first define the simplest member of the class, the Galilean
section s 0:

s 0(q, p) 5 ((0, q), h (p)), p 5 ( ! m 2 1 p2, p) (2.3)

As (q, p) varies through R6, the range of s 0 in 31
1 (1,3) can be identified

with R3 3 9 1
m .

Any other affine section s is then defined as

s (q, p) 5 s 0(q, p)(( f(q, p), 0), I2), I2 5 2 3 2 unit matrix (2.4)

where f is a smooth affine function:

f (q, p) 5 q ? q (p) 1 w (p) (2.5)

q : R3 ® R3 and w : R3 ® R are smooth functions, of which w is arbitrary

and q is restricted by

| b (p)| , 1, where b (p) 5
p0 q (p)

m 1 p ? q (p)
(2.6)

( " p P R3). It is then easily verified that the range of s in 3 -
1 (1, 3) can be

identified with ø p P 9 1
m S n( p), where S n( p) is the spacelike hyperplane in Min-

kowski space consisting of all points qÃP R1,3 such that

n (p) ? qÃ5 [n( p)]0qÃ0 2 n( p) ? qÃ5
1

m
[n( p) ? p] w (p) (2.7)

The underline denotes the spatial part of a 4-vector. It can now be shown

(Ali et al., 1996) that if s is an affine section, characterized by the functions

b and w , then the section s (a,A), which is the transform of s according to
(1.5), is characterized by the functions

b 8(p) 5
L n (p)

[ L n (p)]0

, w 8(p) 5
n (p) ? [m ( L 2 1a) 1 w (p)p]

[ L n( p)] ? p
(2.8)
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Consider next the set of vectors in the representation space C2s+1 ^
L 2(9 1

m , dk/k0):

h i 5 ei ^ h , i 5 1, 2, . . . , 2s 1 1 (2.9)

where {ei }2s 1 1
i 5 1 is the canonical basis of C2s+1 and h : 9 1

m ® C is a function

satisfying the conditions

# R3
| h (k) | 2 dk , ` , | h (Rk) | 2 5 | h (k) | 2, R P SO(3) (2.10)

For an arbitrary affine section s , define the coherent states

h i
s (q, p) 5 U s

m( s (q, p)) h i, i 5 1, 2, . . . , 2s 1 1, (q, p) P G
(2.11)

A general result, proved in Ali et al. (1996; see also PrugovecÏ ki, 1980), then

shows that these coherent states form a frame. In particular, there exist

sections (e.g., the Galilei section s 0 and its translates) for which the frame

is tight:

o
2s 1 1

i 5 1 # 1

| h i
s (q,p) & ^ h i

s (q,p) | dq dp 5 I (2.12)

Furthermore , if s is a section which generates a tight frame, then so also do

all the transformed sections s (a,A), (a, A ) P 3 -
1 (1, 3). The operators

a s (a , A)( D ) 5 o
2s 1 1

i 5 1 # D

| h i
s (q,p) & ^ h i

s (q,p) | dq dp (2.13)

form a generalized system of covariance:

U s
m(a, A )a s ( D )U s

m(a, A )* 5 a s (a, L )((a, A ) D ) (2.14)

Suppose now that we start with the Galilean section s 5 s 0. This section

is characterized by the functions b (p) 5 0 and w (p) 5 0, for all p P R3,

and, as we saw before, its range in 3 -
1 (1, 3) can be identified with R3 3

9 1
m . According to (2.8), the translated section s (n,A ) is characterized by

b (p) 5
L (1, 0)

[ L (1, 0)]0

5 b , w (p) 5
m[ L 2 1a]0

[ L (1, 0)] ? p
(2.15)

Thus, the range of s (a,A) in 3 -
1 (1, 3) can be identified with ø p P 9 1

m S n( p),

where S n( p) is the tilted hyperplane consisting of all qÃP R1,3 such that

n ? qÃ5 [(n ? p)/m] w (p), n 5 L (1, 0). We also note from here that if we

restrict ourselves to the Euclidean subgroup % , 3 -
1 (1, 3), consisting of all
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group elements of the type ((0, a), r ), were a P R3 and r P SU(2), then s 0

is stable under its action and consequently, for this subgroup (2.14) reduces

to a system of covariance in the sense of (1.2). Recall that we identify G 5
3 -

1 (1,3)/T ^ SU(2) with the phase space of the relativistic system, and

therefore the system of covariance (2.14) is based on phase space.

3. RELATIVISTIC LOCALIZATION ON PHASE SPACE

We demonstrate in this section how the generalized system of covariance

introduced in (2.14) enables us to discuss the localizability of massive relativ-

istic particles with spin in a manner which is operationally consistent with

the existence of a conserved probability current and a position operator. The

traditional way of understanding relativistic localization follows the original

suggestion of Newton and Wigner (1949) as later elaborated and interpreted
group theoretically by Wightman (1962). This interpretation is linked to the

existence of a system of imprimitivity for the Euclidean group %, based upon

the configuration space R3. In order to understand this in our present context,

let us consider again the representation U s
m in (2.1) and this time look at its

position space realization. Let ^: C2s+1 ^ +2(9 1
m , dk/k0) ® C2s+1 ^ L 2 (R3,

dx) be the ª weighted Fourier transformº :

(^ f )(x) 5
1

(2 p )3/2 # R3
exp[ik ? x] f (k)

dk

(k2 1 m 2)1/2 (3.1)

This map is unitary; let Upos (a, A ) 5 ^U s
m (a, A ) ^ 2 1 be the corresponding

unitarily equivalent representation of 3 -
1 (1, 3) on C2s+1 ^ L 2(R3, dx). Ele-

ments c P C2s+1 ^ L 2(R3, dx) represent position-space wave functions. For
each Borel set E , R3, consider the projection operator P (E ) on C2s+1

^ L 2(R3,dx):

(P (E ) c )(x) 5 x E(x) c (x), c P C2s 1 1 ^ L 2(R3, dx) (3.2)

x E is the characteristic function of the set E. These operators constitute a

PV-measure. Moreover, since for ((0, a), r ) P %,

(Upos((0, a), r ) c )(x) 5 $s( r ) c (R ( r 2 1)(x 2 a)), c P C2s 1 1 ^ L 2(R3, dx)

(3.3)

where R ( r ) denotes the rotation matrix in SO(3) corresponding to r P SU(2),

we easily verify the relation

Upos((0, a), r )P (E )Upos((0, a), r )* 5 P (((0, a), r )E ) (3.4)
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Thus, restricted to %, the representation Upos and the operators P (E ) constitute

a system of imprimitivity. Moreover, defining the three position operators
QÃ

i and their inverse transformed versions Qi ,

QÃ
i 5 # R3

xi dP(x), Q i 5 ^ 2 1QÃ
i^, i 5 1, 2, 3 (3.5)

it is not hard to see that the Q i are exactly the Newton±Wigner (1949) position

operators for a relativistic particle of mass m . 0 and spin s 5 0, 1/2, 1,
3/2, . . . . It is the existence of these position operators along with the system

of imprimitivity (3.4) for the Euclidean subgroup % of 31
1 (1, 3) which forms

the basis of the Newton±Wigner±Wightman theory of localizability for such

a particle.

Although the above scheme is satisfactory insofar as the existence of
the position operators (3.5) is concerned, there is a difficulty with a probability

interpretation of the operators P (E ). For example, the quantity ^ c | P (E ) c &
cannot be interpreted as the probability of finding the system (in the state

c ) localized in the volume E of position space. Furthermore, if c (x, t) is

the time-translated wave function, then | c (x, t)|2 is not the time component

of any conserved probability current.
Let us see how the operators a s (a,A)( D ) appearing in the generalized

system of covariance (2.14) enable us to overcome these difficulties. Let us

agree to call the operators a s 0( D ) [defined for the Galilean section, see (2.13)]

the operators of localization on the relativistic phase space R3 3 9 1
m . In that

case, the operators a s (0, A)( D ) represent localization operators on the Lorentz-

transformed phase space S n 3 9 1
m , where S n is the tilted spacelike hyperplane

in Minkowski space, the points qÃof which satisfy qÃ? n 5 0, where n 5 L (1,

0). We shall interpret ^ f | a s (0, A)( D ) f & as the probability of finding the system

(in the state f ) localized in the volume D Ã, S n 3 9 1
m , where

D Ã5 {(qÃ, p) P S n 3 9 1
m | qÃ5 L 2 1(0, q),

(3.6)
p 5 ( ! p2 1 m 2, p), (q, p) P D }

Next, a straightforward computation shows that the Newton±Wigner operators

Qi in (3.5) can also be recovered by integrating over the phase-space position

variables with respect to the POV-measure a s 0, i.e.,

Qi 5 # G

qi da s 0(q, p), i 5 1, 2, 3 (3.7)

More interestingly, if (q8, p8) 5 (0, L 2 1)(q, p), then

U m
s (0, A )Q iU

m
s (0, A )* 5 # G

q 8i da s (0, L )(q, p), i 5 1, 2, 3 (3.8)
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In other words, the transformed position operator is obtained simply by

integrating with respect to the variables of the tilted hyperplane.

Finally, note that the map W: C2s+1 ^ L 2 (9 1
m , dk/k0) ® C2s+1 ^ L 2( G ,

dq dp):

(W f )i(q, p) 5 ^ h i
s 0(q,p) | f & : 5 C i(q, p), i 5 1, 2, . . . , 2s 1 1 (3.9)

is an isometric embedding. We call C (q, p), with components C i(q, p), a

phase-space wave function and | C (q, p)|2 a phase-space probability density.

If H0 denotes the free Hamiltonian on C2s+1 ^ L 2 (9 1
m , dk/k0), (H0 f ) (k) 5

k0 f , then the function C (q, p, t), with components,

C i(q, p, t) 5 ^ h i
s 0(q,p) | e 2 iH0 f & , i 5 1, 2, . . . , 2s 1 1 (3.10)

is a time-translated phase-space wave function. At this point, let us assume

that the function h appearing in the definition of h 1 in (2.9) is real-valued,

and define a current (Prugovecki, 1978a, b)

j m (q) 5 # n 1
m

p m

m
| C (q, p, t)|2 dp

p0

,

q 5 (q0, q) 5 (t, q),

m 5 0, 1, 2, 3 (3.11)

It can then be shown (Ali et al., 1988; Prugovecki, 1978a, b) that j m transforms
as a 4-vector under Lorentz transformations and

- m j m (q) 5 0 (3.12)

i.e., j m represents a conserved current. This shows that the generalized relativ-

istic system of covariance (2.14) leads to an entirely consistent notion of

localization on phase space. Moreover, this interpretation is supported by the
existence of operationally defined position operators and conserved currents,

which transform properly under the Lorentz group. This latter property of

current conservation was first obtained in PrugovecÏ ki (1978a, b) for a spin-

zero particle, where, indeed, the suggestion was first made that relativistic

particles be localized on phase space rather than on position space alone.

In conclusion, it ought to be emphasized that admitting localization
operators which are POV-measures, as opposed to PV-measures, was the

crucial element in circumventing the shortcomings of the Newton±Wigner±

Wightman scheme of localization for massive relativistic particles with spin.
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